First Integrals of Two-Dimensional Dynamical Systems via Complex Lagrangian Approach

نویسندگان
چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Determining Liouvillian first integrals for dynamical systems in the plane

Here we present/implement an algorithm to find Liouvillian first integrals of dynamical systems in the plane. In [1], we have introduced the basis for the present implementation. The particular form of such systems allows reducing it to a single rational first order ordinary differential equation (rational first order ODE). We present a set of software routines in Maple 10 for solving rational ...

متن کامل

A geometrical method towards first integrals for dynamical systems

We develop a method, based on Darboux’ and Liouville’s works, to find first integrals and/or invariant manifolds for a physically relevant class of dynamical systems, without making any assumption on these elements’ form. We apply it to three dynamical systems: Lotka–Volterra, Lorenz and Rikitake. I. HISTORICAL OVERVIEW. In, Roger Liouville and A. Tresse developed a method for deciding whether ...

متن کامل

On Two-parameter Dynamical Systems and Applications

In this note some useful properties of strongly continuous two-parameter semigroups of operators are studied, an exponential formula for two-parameter semigroups of operators on Banach spaces is obtained and some applied examples of two-parameter dynamical systems are discussed

متن کامل

Multiresonant control of two-dimensional dynamical systems.

It is shown that many two degree of freedom (2D) nonlinear dynamical systems can be controlled by continuous phase-locking (double autoresonance) between the two canonical angle variables of the system and two independent external oscillating perturbations having slowly varying frequencies. Conditions for stability of the 2D autoresonance and classification of systems with doubly autoresonant s...

متن کامل

observational dynamical systems

چکیده در این پایاننامه ابتدا فضاهای متریک فازی را به صورت مشاهدهگرایانه بررسی میکنیم. فضاهای متریک فازی و توپولوژی تولید شده توسط این متریک معرفی شدهاند. سپس بر اساس فضاهایی که در فصل اول معرفی شدهاند آشوب توپولوژیکی، مینیمالیتی و مجموعههای متقاطع در شیوههای مختلف بررسی شده- اند. در فصل سوم مفهوم مجموعههای جاذب فازی به عنوان یک مفهوم پایهای در سیستمهای نیم-دینامیکی نسبی، تعریف شده است. ...

15 صفحه اول

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Symmetry

سال: 2019

ISSN: 2073-8994

DOI: 10.3390/sym11101244